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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1534

A NIIMERICAL SOLUTION OF THE PROBLEM OF MIXING OF

LAMINAR COAXIAL STREAMS OF GREATLY DIFFERENT

DENSITIES - ISOTHERMAL CASE

By Herbert Weinstein and Carroll A. Todd

The system under consideration is a slow-moving_ heavy inner stream sur-

rounded by a fast-moving, light outer stream infinite in extent. The flow region

of interest lies between the inner jet entrance and the end of the potential

core. The density ratio of the two streams may vary through several orders of

magnitude, and no restrictions are placed on the velocities of the two compo-

nents. The only information required is the initial velocity and concentration

profiles and the physical properties of the fluids.

An equation set is derived and solved numerically for several sets of input

parameters. A system of equations that is not extremely sensitive to physical

property variations results from the manner in which the variables are made di-

mensionless. A diffusion equation valid for high values of the density ratio is

employed. No consideration is given to the hydrodynamic stability of the system.

Results are calculated for a given set of physical properties and a range of

values of density and velocity ratio. These results include:

i. The potential core length is approximately 6 radii for fluids of the same

density and a velocity ratio of i00.

2. For values of density ratio above 20_ the effect of varying density ratio

is small.

3. For Froude numbers of 102 or less_ the mass and momentum transfer become

second-order effects compared to the acceleration due to the force field.

4. Large changes in the values of physical properties of the two fluids

cause relatively small changes in potential core length.



INTRODUCTION

There has been considerable discussion in recent years on the mixing of
laminar coaxial streams of different densities (refs. i and 2). However, the
density ratios of the two streams considered have almost always been approxi-
mately 2 or less. The coaxial-flow, gaseous-reactor concept developed in the
recent past (ref. 3) and the work on coaxial streams of plasma and coolant
(ref. 4) have spurred interest in the coaxial flow of gases with density ratios
of 5 to i00.

Stream

Inlet
duct

___

J-Stream 2

Figure I. - Flow system.
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The system considered here and shown in figure i is that of a s!ow-movingj

heavy inner stream surrounded by a fast-moving light outer stream infinite in ex-

tent. The flow region of interest is that between the inner jet entrance and the

end of the potential core. This potential core is defined as the relatively un-

disturbed inner stream fluid. The ratio of the densities of the two streams may

vary through several orders of magnitude; as long as the flow is lamdnar, there

are no limits on the velocities of the two components. The initial velocity and

concentration profiles and the physical properties of the fluids are the only in-

formation that is required. Any initial velocity profile may be specified.

The hydrodynamic equations are transformed to a stream-function coordinate

set and then integrated numerically from the initial conditions. No attempt was

made to uncouple the simultaneous differential equations as this has always

forced restrictions on the density variation. It was felt that, in order to

maintain a reasonable degree of accuracy in the solution, it would be best to



the burden of the computations on the digital computer. The method of attack
used here is similar to that of Pal (ref. i), but it is concerned with a cylin-
drical geometry whereas Pal's work is for a Cartesian system. The diffusion
equation used by Pai limits his work to density ratios of about i or 2, while
this work employs a diffusion equation that is also correct for muchhigher
values of density ratio. The manner in which the variables are madedimension-
less is different from that of Pai and results in a system of equations that are
not very sensitive to physical property variations. Velocity ratios instead of
velocity differences are considered whenthe system is being defined.

The quantities of major interest calculated and presented here are the
length of potential core, the average axial velocity of the inner fluid_ and the
inner-fluid average density for various values of initial density ratio and ini-
tial velocity ratio of the two streams. Samplevelocity and concentration pro-
files are also shownto illustrate the changes in the profiles with increasing
axial distance do_mstream. Cases with both flat and parabolic initial velocity
profiles are presented to indicate the effect the shape of the initial velocity
profile has on potential core length. The effect of a body force directed along
the axis of the flow system is shownbecause this effect would be present in a
coaxial-flow, gaseous-reactor concept. Finally, the values of the parameters
(i.e., Schmidt number, Reynolds number, viscosity ratio, and diffusion coeffi-
cient) are varied to demonstrate their effect on the aforementioned values.

Presented here, then, are the results of an accurate numerical solution of a
laminar, isothermal coaxial-flow system in which the two fluids have greatly dif-
ferent densities. The method is similar to that of Pai but differs on several
important points. No consideration has been given to the hydrodynamic stability
of the system.

a

C

D

F

K

L

m

N

P

SYMBOLS

acceleration due to body force

concentration (mole fraction) of inner-stream component

diffusivity

Froude number

Boltzmann constant

length

molecular weight

molar density of fluid

pressure
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stream function

arithmetic meanmolecular speed

Subscripts :

Re Reynolds number

r radial length variable

Sc Schmidt number

T temperature

u axial velocity component

V molecular volume

v radial velocity component

z axial length variable

p (ml/m2) - 1

E maximumenergy of attraction for Lennard-Jones potential

p viscosity

p mass density

a molecular diameter

av average value for all r

L length

max maximum

0 initial conditions

1 inner stream

2 outer stream

ll self diffusion

12 binary diffusion

positions at a given z



Superscript:

(--) dimensionless variable

ANALYSIS

The derivation of the equation set that describes the coaxial-flow system is
presented here. The numerical methods employed in the solution of these equa-

tions are described in appendix A.

Assumptions and Restrictions

The assumptions and restrictions made in deriving the equation set are

listed here, not necessarily in order of importance:

(I) The entire flow field is at a constant temperature.

(2) The entire flow field is at a constant pressure.

(3) There is axial symmetry in the flow system.

(4) The fluids mix ideally; there is no pressure, temperature, or volume

change on mixing.

(5) There is steady state in the system.

(6) The normal boundary-layer assumptions are used; that is,

_u _u _C _C
yff >> u>>v, yr-- >>

(7) The assumption _/_r >> _/_z, which follows from u >> v, is stated

separately because it is used again in a transformation of coordinates.

Derivation of Equation Set

The continuity_ momentum_ and diffusion equations are given for the system

shown in figure i (eqs. (i), (2)_ and (5)). The continuity equation already con-

tains the steady-state and axisymmetric assumptions. The momentum equation is

the result of simplifying the Navier-Stokes equation with the steady-state_

constant-pressure_ axisymmetric, and boundary-layer assumptions. The last term

of this equation_ which includes the effect of the buoyancy of the outer stream,

describes the effect of a body force directed along the axis and away from the

entrance. The diffusion equation (ref. 5), which contains the steady-state and

axisymmetric assumptions but no assumptions as to the variation in density, is

correct for large density variations. NO pressure or thermal diffusion is con-

sidered here as noted by assumptions (i) and (2) of the aforementioned list.
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Each equation is written for variable density and applies over the whole flow
field because the gases form a continuum. Only density changes that are caused
by mixing are considered.

Continuity:

(p_) + (p_) = o (i)

Momentum:

v UF + u _F = p-F_F
a(_ - _2)

+ (2)
P

Diffusion:

v _F + _ YFz= r _F (3)

Since the fluids mix idealiy_ the density at a point is equal to the sum of

the partial densities at that point. Since the temperature and pressure are con-

stant_ the molar density N is constant and the mass density p can be ex-

pressed as

p = m2N - 0 +

This can be expressed with the definition

m I
_- i

m2

as

p = mzN(_c+ i)

Introducing the dimensionless quantities

DI2 r -- u
D- r =m u=--_

Dlt r 0 ul,O

2
- z ul,O__ - v
Z ----_ F = V ----_

ro roa Ul _0

-- i_ roUl_oP!,o NI;O

= _i Rel'O - NijO SCI_O = Pi,oDII

(_)
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and substituting these and equation (A) into equations (1) to (5) result in the

following dimensionless equations:

Continuity:

_-F
(5)

Momentum:

v_-_ + u _z = Re!,o #C + i r _r

pC
+ F(_c + i) (e)

Diffusion:

__ -- _C i _C + i _ I D-_ _¥I-- _C + u -- = _ _ C _ 1
v _r _ Rel,oSCl_ 0 r

(v)

The stream function is defined by the following relations:

__!¢= _ i__(_c + i)]
_z r-Jr

_F r-U

(8)

This satisfies the dimensionless continuity equation.

The dimensionless transport properties D and _ are evaluated from the

ratio of the values of the pure components and also in the case of viscosity from

an elementary mixing equation. The mixing equation used for viscosity is

m

= CmI (l - C)m2
-- +

_i_0 _2,0

(ref. 6), which upon substitution of the dimensionless groups_ reduces to

=
_C+I

(# + l)c +
i - C

(9)



The dimensionless diffusivity is calculated from the Gi!liland equation in
the following manner:

Dll vl/3+ Vl/3
i 2

Introducing V2 = V2/VI results in

i +_/3 (i0)

The dimensionless diffusivity can also be derived in a somewhat different but

equivalent form from a Lennard-Jones potential argument. This method was not

used_ but it is presented in appendix B by way of illustration. The more rigor_
ous Lennard-Jones potential argument provides an alternate constant value for D.

The momentum diffusion and energy equations are now transformed to the

z - @ plane in the following manner. Originally_ @, C, and u are functions of

the spatial coordinates as follows:

¢ = _(7,Y)

c = c(7,Y)

and after the transformation functional relations of

dinate r in terms of _ and the spatial coordinate

C, u_ and the spatial coor-

z are obtained:

7 = F(¢,Y)

c = c(_,_)

u = u(_,Y)

The relations for the transformations are

Z (c_-_) Z Z

(11)

Transforming the momentum and diffusion equations (eqs. (C) and (7)) with eT_a-

tion (i0) produces the following:
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Momentum:

(12)

Diffusion:

_z Rel,0ScI,O _
(13)

m

Because of the cylindrical geometry the r does not drop out of the equations as

in the work of Pal, and a relation between _ and r must be carried along with

the transformed equations set. Since _/$7 is zero at z = 0 and very small

elsewhere, it is neglected here; from equations (8) the following is obtained:

/0 /ord_* = [(_c + i)l* _7_ (14a)

where * denotes the dummy variable. This relation will be used for the initial

conditions since they are expressed as functions of r. During the integration

where r is a dependent variable, the following is used:

/or /olv* dr* -- J(_C + i)
d_* (14b)

The numerical integration is made with equations (12) to (14) and is described in

appendix A.

As an aid in presenting the results, two terms are defined. The first term,

the average axial velocity of inner-stream component at some axial station, is

defined as

_ uCr dr

Uav'l = _0 _ Cr dr

The second term, the inner-fluid average density, is defined from continuity of

the inner fluid. It represents the amount of inner fluid present in a cylindri-

cal section of radius rma x and length L divided by the amount of inner-stream
fluid that would have been present in the section had both streams been initially

moving with the same velocity. The radius rma x is cho.sen large enough so that



there is no flow of inner-stream componentout the sides of the cylinder. Since
the pressure and temperature are constant, an average density at any axial sta-
tion is simply

-- 1
PaY = -------

Uav

and the inner-fluid average density is defined as

L _

-- i dz

Pav,L = _ ------
Uav

RESULTS AND DISCUSSION

The results obtained by this analysis are discussed in this section in terms

of the potential core of the inner fluid. This term is used to mean the undis-

turbed flow inside the mixing region between the two coaxial streams. Neither

nature nor the equations_ however, allow for undisturbed flow in contact with

disturbed flow. As soon as the outer fibers of the inner stream experience ac-

celeration_ all the inner fibers also accelerate (some only to an infinitesimal

extent). It is necessary_ for this reason_ to legislate a potential core. This

is done by considering all the inner fluid that has a velocity less than 1.05

times the initial inner-fluid velocity to lie in the potential core (see fig. 1).

The accuracy of the results of this analysis is tied in large part to the

assumption that

and

This assumption is especially in doubt in the region close to the entrance. All

the results presented here_ however, are for this region between the entrance and

the end of the potential core. To illustrate that the results are not obviously

invalid, these derivatives are calculated for the case of largest density and

velocity gradients along the z-directlon at a radius of approximately 1 (fig. 2).

This region along the boundary of the jets exhibits the largest values of the

partial derivatives in both directions. It is seen from the curves that, while

®the value of the ratio starts at about 0.5, it drops to a value below 0.i

at _ 2. The ratio of _/8_ s s= _ i een to remain at a very low value for the
Oulor

lO



whole region of interest. Since the calculations are made with this assumption

included, this proof of validity is not conclusive but is inferred from the small

values of the ratios.
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Figure 2. - Evaluation of validity of boundary-layer assumptions. Reynolds number, lOOO; Schmldt
number, l; molecular volume ratio, O.2; viscosity ratio_ O.2; velocity ratio of outer to inner

streams, lOO; density ratio of inner to outer streams, lO0; Froude number, _.

It can be seen from the differential equations describing the f!ow phenom-

ena that, when body forces are neglected_ the Reynolds number of the inner stream

at the initial conditions appears only as a constant factor in both equations

(12) and (13) and does not appear at all in equations (14a) and (lAb). The equa-

tions could have been solved in terms of _/Rel,0; then the Reynolds number would

not have appeared at all in the equations. Hence, the Reynolds number has no ef-

fect on the velocity and concentration profiles or on the mixing in the absence

of body forces as long as the flow is laminar. Changing the Reynolds number will

only affect the axial location at which a profile exists and not the shape it

takes. The data that appear here can be made to apply for any Reynolds number by

manipulation of the t-coordinate. The real effect of the Reynolds number is on

the stability of the flow system with which this report is not concerned. For

these reasons all the data that are presented here are for Rel, 0 = i000.
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The main body of results presented here is for flat initial velocity and

concentration profiles. Flat profiles were chosen for simplicity in calculation

despite the fact that a singularity exists where the profiles meet. This flow

would be more stable than flow with a velocity profile that was not monotonically

increasing with radius, such as two parabolic profiles both reaching zero at
= l.

2 4 6 8 I0 0 .2 .4 .6 .8 ].0

Veiocity, _ Concentration (mole fracticn) of

inner-stream component, C

(a) Velocity prcfiles.
(b) Concentration profiles.

Figure 3. - Velocity and concentration profiles with flat initial

profiles. Reynolds number, i000; Schrnidt number, I; molecular
volume ratio, 0.2; viscosity ratio, 0.2; velocity ratio of

outer to inner streams, lO; density ratio of inner to outer

streams, lO; Froude number, _.

Figure 5 shows typical velocity and concentration profiles that have flat

initial profiles. The case illustrated has a velocity ratio of outer to inner

streams of lO and a density ratio of inner to outer streams of lO, both inter-

mediate values in the range of values considered. The axial position of the pro-

files is at _ = 48.4, which as the profiles show is near the end of the poten-

tial core, since the center streamline has accelerated to a value of about 5 per-

cent above the initial value. The velocity profile is a smooth curve, monotoni-

cally increasing in the increasing?-direction. There is an inflection point in

the curve that represents a potentially unstable flow condition. The concentra-

tion profile in figure 3(b) is a smooth monotonically decreasing curve and also

exhibits an inflection point. It also should be noted that a comparison of fig-

ures 5(a) and (b) shows the momentum mixing region is larger than the concentra-

tion mixing region.
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The end of the potential core is considered as that point at which the cen-
terline velocity reaches 1.05 times the initial centerline velocity. The length
of the potential core is a function of both the mass density function and the
initial velocity ratio as shownin figure 4. It is seen that the potential core
length increases with increasing _ and decreasing u--2 values. It is interest-
ing to note that even for _ = 0, which corresponds to fluids of the samedensity
or the samefluid in each stream, and u--2 = I00, the potential core extends for
approximately 6 radii downstream. For _ = 50 and u2 = 5, the potential core
extends for approximately 76 radii downstream. The end of the potential core
corresponds to the point at which succeeding velocity profiles becomesimilar and
similarity solutions becomevalid, and therefore is an important result of this
analysis.

6C

sc

r_

_ 4c
o

4J

Veloelty ratio of

outer to inner2_- --

streams, / I

I0 i00

0 20 40 60 80 I00

Density ratio off inner to outer

strews,

Figure 4. - Length of potential core

as a function of density and

initial velocity ratios. Reynolds

number, I000; Schmidt number, l;

molecular volume ratio, 0.2; vis-

cosity ratio, 0.2; Froude number,

The axial velocity of the inner-stream fluid, averaged in the radial direc-

tion, at the end of the potential core is the subject of figure 5. The curves

show that U--av,l increases as 72 increases and _ decreases; however, the

effect of B variation becomes very small at values of _ greater than 20. The

values for u--av,l at the end of the potential core, ranging from about 2 to 5

15



for the range of variables considered, indicates the acceleration of the inner
fluid that takes place before a similarity solution becomesvalid.

o

o
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o 4 _
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Velocity ratio of

outer to inner

streams,

i l J
) lO0

1

0 20

t
........ I ........

I

_ i0 ___ __

40 60 80 i00

Density ratio of inner to outer streams,

Figure 5. - Average axial velocity at end of potential core

as a function of density ratio. Reynolds number, I000;

Schmidt number, I; molecular volume ratio, 0.2; viscosity

ratio, 0._; Froude number_ _.

Figure 6 shows the average density of inner-fluid component for the region

between _ = 0 and _ = 15 as a function of the initial density. The sensi-

tivity of inner-stream average density to changing _ increases markedly for in-

creasing values of u'-2. At a value of _2 = 100, the average density increases

from about 0.15 to 0.40 as _ varies from 0 to 100. This result has an inter-

esting application to the gaseous, coaxial-flow, nuclear-reactor concept of ref-

erence 3. Values of u--2 = 100_ _ = 100, and a final _ = 15 comply with one of

the cases of reference 3, add the resultant value of the average density of 0.40
is very encouraging for this concept.

The effect of a body force acting along the flow axis in the same direction

as the flow is shown in figure 7. The Froude number contains the acceleration

term due to the body force in the denominator; hence, as the Froude number ap-

proaches infinity_ the body force approaches zero. Here, again, the potential

core is made up of fluid moving at or near the initial inner-stream velocity so

that the potential core length approaches zero as the Froude number becomes

small. This plot of potential core length as a function of Froude number for a

given set of parameters illustrates that, for Froude numbers of the order of 10 2
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Figure 6, - Inner-fluld average density as a function of density ratio. Reynolds number, lO00}

Sc_hmidt number, I; molecular volume ratio, 0.2; viscosity ratio, 0.25 Froude number, _.
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Figure 7. - Effect of Froude number on potential core length. Reynolds number, 1000; Schmidt number,

11 molecular volume ratio, 0.2; viscosity ratio, 0.2; velocity ratio of outer to inner streams, i0;

density ratio of inner to outer streams, 10.
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or less_ the mass and momentumtransfer becomesecond-order effects comparedto
the acceleration caused by the force field. The case shownis for _ = i0, which
is representative of cases with high _. This is so because the body force term

is of the form _C/[F(BC + i)] or, on rearranging, i/IF(I + _C)I" As _ be-
comesvery large, this term can be approximated as I/F inside the potential
core. When _ is small_ the effect is small; and at _ = O the body forces
have no effect.

Figure 8 illustrates the effect of physical property variation. The effect
of Schmidt numbervariation is shownin figure 8(a). For a change in Sc_midt
numberby a factor of i0, the length of the potential core and the U--av,l at the
end of the potential core only changeby approximately a factor of 2. Fig-
ure 8(b) showsthe effect of changing the viscosity ratio. Hence; for a tenfold
change in _2 the potential core length changesby approximately a factor of 3,

but the U--av_l changes only by about 1.2. Finally_ the effect of changing the
molecular volume ratio V2 of the two componentsis shownin figure 8(c). Once
again; for a tenfold change in V2 the potential core length changesby only a
factor of somewhatless than 2; and the Uav at the end of the potential core
changesby only i0 percent or so.
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(a) Sehmidt number. (b) Viscosity ratio. Sehmidt (c) Molecular volume ratio.

Molecular volume number, i; molecular volume Schmldt number_ l; vlscosisy

ratio, 0.__; vls- ratio, 0.2. ratio, 0.2.

cosity ratio, 0,2.

Figure 8. - Effect of physical property variations. Reynolds number, I000; velocity ratio

of outer to inner streams, I0; Froude _umber_ _,
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These last curves showthat the choice of dimensionless groups madein this
approach was quite fortunate and that results obtained from it should be valuable
even though the physical properties used in the calculation were only approximate
values.

Figure 9 showsthe velocity and concentration profiles for a case with para-
bolic inlet velocity profiles, which are plotted with the samevalues of input
parameters. The very slow-moving region at _ = i slows downthe flow around it
and prevents early acceleration of the inner stream, which would provide for much
longer potential core lengths than were found for the slug-flow cases. This type
of nonmonotonicvelocity profile, however_ is extremely unstable hydrodynamically
and is included here only as a point of interest.
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Figure 9. - Velocity and concentration profiles with parabolic

inlet velocity profiles. Reynolds number, lO00) Schmldt

number, I; viscosity ratio, 0,21 velocity ratio of outer to

inner streams, lO; density ratio of inner to outer streams, I0 i

Froude number, _.

SDMMARY OF RESULTS

In this research study_ an analysis for the isothermal, laminar coaxial flow

of two fluids is presented. The analysis is based on certain assumptions,

mainly, the boundary-layer simplifications and constant pressure in the flow

field. The analysis resulted in an equation set, which was solved numerically.

Typical results yielded by this analysis are summarized under the two categories

of general and specific results. The general results are as follows:

i. The velocity and concentration profiles are smooth curves, and both con-

tain inflection points. Velocity increases monotonically and concentration of

17



inner-stream componentdecreases monotonically out from a radius or stream func-
tion value of zero.

2. The potential core length increases with increasing density ratio of
inner- to outer-stream components; it decreases with increasing velocity ratio of
outer to inner streams.

3. Increasing axial acceleration forces in the direction of flow, as meas-
ured by the Froude number, shortens the length of the potential core.

4. Changing the initial velocity profile from a flat to a parabolic form in-
creases the potential core length markedly for this analysis.

For the following parametric values: Reynolds number, I000; Schmidt number,
i; molecular volume ratio, 0.2; viscosity ratio, 0.2; the following specific re-
sults were found:

!. For fluids of the samedensity and a velocity ratio of outer to inner
streams of i00_ the potential core length remains approximately 8 radii.

2. The average velocity of the inner-stream componentat the end of the po-
tentiai core increases as the velocity ratio of outer to inner streams increases
and the density ratio of inner to outer streams decreases. For values of density
ratio of inner to outer streams greater than 20_ the effect of varying the den-
sity ratio is small.

S. For a velocity ratio of outer to inner streams of i00, the average inner-
stream density for the region iS radii long starting at the initial face in-
creases approximately threefold as the density ratio of inner to outer streams
varies from 0 to i00.

4. For a velocity ratio of outer to inner streams of i0, a density ratio of
inner to outer streams of I0, and Froude numbersof 102 or less, the mass and
momentumtransfer becomesecond-order effects comparedto the acceleration caused
by the force field.

5. For a velocity ratio of outer to inner streams of i0 and a density ratio
of inner to outer streams of i0, changing the $chmidt numberfrom a value of 2 to
a value of 0.2 increases the potential core length by a factor of 2; changing the
viscosity ratio from 0.2 to 2 decreases the potential core length by a factor
of S; and changing the molecular volume ratio from 0.2 to i decreases the poten-
tial core length by a factor of approximately 2.

Lewis Research Center
National Aeronautics and Space Administration

Cleveland, 0hio_ October i_ 1962
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APPENDIXA

NUMERICALINTEGRATION

The differential equations, which define the physical system, are:

_u i_!_! _ []_ = Re _ _rZu(_C + 1) _.ul C÷o_j + F(_c l)

_c (pC+l)Z _ (D _c]= Re Se o_ r2u o?/

(_)

(_)

(AS)

_c + 1 (A_)
_=' I-C

(_ + 1)c +--
_2

These equations are integrated numerically to obtain the solution of each func-

tion (u = u(_,z), C = C(_,z), r = r(_,z), and _ = _(_,z)) in the semi-infinite

strip R:[0 _ _ _ _max, z _ 0].

The description of the system at z = 0 is given by the following rela-
tions:

u(@,0) = u(r) (AS)

c(_,o) = c(_) (_6)

j_o _r
_(_) = _(_*)_c(r*)+ _ r* dr* (AT)

Also, at z = O,

: o (AS)

Now if the flat initial profiles, u(r) and C(r), are defined as functions of the

radius by:

u(r) : _, c(r) : 1 (o _<r _ l) (A9)

u(r) = u2, C(r) : 0 (i < r _rmax) (llo)
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then substituting the values of u(r) and C(r) given in equations (A9) and (AI0)
into equation (A7) produces the relations:

u(¢,0) = l, c(e,0) : z (All)

u(,,o) : _z, c(_,o): o (zi_-i < _ <-%_x) (Al2)

A substitution of the relations derived in equations (All) and (AI2) into equa-

tion (AT) yields at z = 0

r2(_) :Z--9---- (0 < r < i) (Al3)
_+i -- -

and

(i < r <_ rmax) (A!4)

The solution of the given system is obtained by using finite difference

methods. By dividing the semi-infinite strip R:[O j @ !@max, z _ O] into a

number of rectangles, a grid or mesh is constructed of dimension mxn. Hence the

notation, Ri, j would denote the ith, jth point on the mesh. If u(@i,zj) is

defined as the functional value of u(_,z) associated with the mesh point Ri,j,

the formal derivative approximations may be described as

z +OAz) _ i
u,(*i' j r_ [u(*i+l'ZJ+o ) - u(*i-z'zj+o)] (Al5)

u_(,i,_j+ _ Az)- _ [u(,i+l,Zj+e)- 2u(,i,zj+e)+ u(,i_l,Zj+e)]
(At!s) 2

(Al6)

Uz(,i,za + o Az)_l [u(h,Za+l) _ u(,i,zj)] (AI7)

where 0 _< 0 _< !.

Applying approximations (AiS) to (Ai7) to equations (Ai) to (AA) (with

e = O) results in:

_c(_i,zj)

Az _ + 1 [G(,i+l, - G(*i-l'ZJ)] + u(*i'zJ) + F[_O(li,zj) + i]
u(Jsi'Zj+l) = 2 A_/ Re zj)

(A]_8)
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where

G(@i,z j) = _(@i,zj)r2(@i,zj)u(*i,zj)[_C(@i,zj) + i]

_z

c(h,_j+I) :

×_-_ [u(,i+_,%)-u(,__l,Zj)]

[_c(,i,zj)+ l]2
_eSc [H(h+I'D)- _(h-_'h)]

(Ai9)

where

and

H(*i'_J): Dr_(*i'zj)u(_i'zJ)2--_[C(*i+Z'_j)- C(*i-l,_j)

f_m_x

Jo u(*' zJ+i) L_c (*i' zJ+l) +

(A2o)

_(@i, Zj+l) =
_c(*i,_O+l) + z

i - e(h,_?+l)
(9 + l)C(@i;zj+ I) +

_2

(AZI)

If equations (All) to (Al4) are used, the description of the system at z = 0
becomes

u(,i,o)= i, c(,i,o): i

u(,i,o) : u2, c(h,o) : o

2,i

r2(¢i,0) : (_i- 2_) 2
u 2 +i

[o< !q

[I < r(kki) _< rmax]

(_2)

> (A23)

Hence, given values of 9, Re, Sc, F, V2, U2, and _max, numerical solutions for

u(_i,zj) , C(_i,zj) , r(_i,zj) , and _(@i_zj) can be obtained for any point Ri, j

21



on the strip R_ starting at z = 0. The stability of the solution is a function
of the mesh ratio _ = Az/(A_) 2. The following method for obtaining a stable
solution is obtained from reference 8:

Let _u/_z = _(_,z,u,u_,u_) and define parameters a and b such that

_u >a>o (AZ_)
_-

and

I III+ _ + ou_ -
(A_s)

Now if A9 is chosen such that

2a

A_ _<T (A26)

then a _ that will yield a stable solution can be computed from

l-baz
o _<z _< 2b (_7)

If a A9 is chosen such that relation (A26) is satisfied, then Az can be com-

puted from:

Az

(A#) z

and

I -bAz
_ 2b

or

z_ < (A'_)2
- + (AZ8)

Application of the aforementioned theorem to equation (AI) with the assumption

that C, _ and r are known functions of _ and z results in

= Re 5"[" _r2u(#C + t) = ml(%z,u,_.,u_)
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Hence,

uB-6-= Re

_C _u 32u]

+ _r2__y_+ _r2(_C+ i) _]

8_i _ + i r2u(_C + i) + 2r#u(_C + i) + 2_r2(_C + i) + _r2u_
= Re

891 = _ + I _r2u(_ C + l)

_-_ _e

and

Ibml bmi I

and thus_ in order to obtain a stable solution,

2aI

A_ - bl

_ : (A_)2
hi[2+

(._9)

It was found that the value of A_ that would satisfy inequality (A26) could be

established from initial conditions; hence it was necessary to compute only

values of fkz that varied directly with z.

Large values of u2 and _ seriously limited the accuracy of the solution

because of truncation errors; hence the following less sophisticated method was

employed for these extreme cases. To avoid these errors_ it is required that the

functional value of C(_i,Zj+l) vary less than some fixed percentage of

C(_i,zj). Let K be a number such that 0 < IKI _ i; the change of C(_i,zj+ I)

could be described as

c(_i,zj+I) = c(¢i,zj)(i+ K) (AS0)
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From the finite difference approximation, equation (A30) becomes

_c(_i,_O)_ c(¢i,zo+1)- c(_i,z4)
6z Az (A31)

Substitution of equation (A29) into (A30) yields

_C(_i' z_) KC(_i' z_) (A32)
6z _ Az

or, in terms of Az, relation (A32) can be written:

(Az)i =
Kc(_i,zj)

_c(_i,z0)
3z

Hence, the Az to be used at each jth interval is

Az = min[(Az)i ] (A33)

The £z computed in this manner is approximately one order of magnitude less

than the Az calculated by equation (A29). Thus, if a A@ is chosen that sat-

isfies relation (A26), stability is assured.
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APPENDIXB

LENNARD-JONESPOTENTIALDIFFUSIVITY

The value of _, the dimensionless diffusivity equal to D12/Dll , can also
be derived from the Lennard-Jones potential argument. The method is as follows:

(ref. 7) or

D12

Dll

D12
Dll

- _/z(_ + 2)

T3(m I + m 2)

J

Then the term

1

from the Gilliland equation corresponds to

nD 1

c2 _DI2

2 2

from the Lennard-Jones potential argument. The value of

when evaluated by either method.

D then is constant
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